465 research outputs found

    LOUPE: Observing Earth from the Moon to prepare for detecting life on Earth-like exoplanets

    Get PDF
    LOUPE, the Lunar Observatory for Unresolved Polarimetry of the Earth, is a small, robust spectro-polarimeter with a mission to observe the Earth as an exoplanet. Detecting Earth-like planets in stellar habitable zones is one of the key challenges of modern exoplanetary science. Characterising such planets and searching for traces of life requires the direct detection of their signals. LOUPE provides unique spectral flux and polarisation data of sunlight reflected by the Earth, the only planet known to harbor life. This data will be used to test numerical codes to predict signals of Earth-like exoplanets, to test algorithms that retrieve planet properties, and to fine-tune the design and observational strategies of future space observatories. From the Moon, LOUPE will continuously see the entire Earth, enabling it to monitor the signal changes due to the planet's daily rotation, weather patterns, and seasons, across all phase angles. Here, we present both the science case and the technology behind LOUPE's instrumental and mission design.Comment: 13 pages, 5 figures. Accepted for publication in Royal Society Philosophical Transactions A. Corrected typos in v

    An updated biostratigraphy for the late Aragonian and Vallesian of the VallĂšs-PenedĂšs Basin (Catalonia)

    Get PDF
    The VallĂšs-PenedĂšs Basin (Catalonia, Spain) is a classical area for the study of the Miocene land mammal faunas and includes one of the densest and most continuous records in Eurasia. Furthermore, it is the type area for the Vallesian European land mammal age. After decades of study a huge amount of bio- and magnetostratigraphic data have been collected, allowing an unprecedented dating accuracy. Here we provide an updated local biostratigraphy for the late Aragonian, Vallesian and Turolian of the VallĂšs-PenedĂšs Basin. This new biostratigraphic scheme is almost exclusively based on fossil rodents, which are the most abundant and one of the best known mammal orders in the area. Our proposal represents a significant refinement compared to previous attempts and provides a formal diagnosis and description of each zone, as well as clear definition of boundaries and a reference locality and section. The chronology of zone boundaries and main bioevents is based on detailed magnetostratigraphic data. The defined biozones allow for the correlation of the sites without associated magnetostratigraphical data. Finally, the correlation of the VallĂšs-PenedĂšs local zones with other detailed local biostratigraphies, such as those of the Calatayud-MontalbĂĄn and Teruel basins (east-central Spain) is discussed. The sequence and chronology of the main bioevents is roughly comparable, although the rodent succession and the structure of the assemblage show important differences between these areas

    Massive gravity as a quantum gauge theory

    Full text link
    We present a new point of view on the quantization of the massive gravitational field, namely we use exclusively the quantum framework of the second quantization. The Hilbert space of the many-gravitons system is a Fock space F+(Hgraviton){\cal F}^{+}({\sf H}_{\rm graviton}) where the one-particle Hilbert space Hgraviton{\sf H}_{graviton} carries the direct sum of two unitary irreducible representations of the Poincar\'e group corresponding to two particles of mass m>0m > 0 and spins 2 and 0, respectively. This Hilbert space is canonically isomorphic to a space of the type Ker(Q)/Im(Q)Ker(Q)/Im(Q) where QQ is a gauge charge defined in an extension of the Hilbert space Hgraviton{\cal H}_{\rm graviton} generated by the gravitational field hΌΜh_{\mu\nu} and some ghosts fields uΌ,u~Όu_{\mu}, \tilde{u}_{\mu} (which are vector Fermi fields) and vΌv_{\mu} (which are vector field Bose fields.) Then we study the self interaction of massive gravity in the causal framework. We obtain a solution which goes smoothly to the zero-mass solution of linear quantum gravity up to a term depending on the bosonic ghost field. This solution depends on two real constants as it should be; these constants are related to the gravitational constant and the cosmological constant. In the second order of the perturbation theory we do not need a Higgs field, in sharp contrast to Yang-Mills theory.Comment: 35 pages, no figur

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Search for displaced vertices arising from decays of new heavy particles in 7 TeV pp collisions at ATLAS

    Get PDF
    We present the results of a search for new, heavy particles that decay at a significant distance from their production point into a final state containing charged hadrons in association with a high-momentum muon. The search is conducted in a pp-collision data sample with a center-of-mass energy of 7 TeV and an integrated luminosity of 33 pb^-1 collected in 2010 by the ATLAS detector operating at the Large Hadron Collider. Production of such particles is expected in various scenarios of physics beyond the standard model. We observe no signal and place limits on the production cross-section of supersymmetric particles in an R-parity-violating scenario as a function of the neutralino lifetime. Limits are presented for different squark and neutralino masses, enabling extension of the limits to a variety of other models.Comment: 8 pages plus author list (20 pages total), 8 figures, 1 table, final version to appear in Physics Letters

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio

    Observation of a new chi_b state in radiative transitions to Upsilon(1S) and Upsilon(2S) at ATLAS

    Get PDF
    The chi_b(nP) quarkonium states are produced in proton-proton collisions at the Large Hadron Collider (LHC) at sqrt(s) = 7 TeV and recorded by the ATLAS detector. Using a data sample corresponding to an integrated luminosity of 4.4 fb^-1, these states are reconstructed through their radiative decays to Upsilon(1S,2S) with Upsilon->mu+mu-. In addition to the mass peaks corresponding to the decay modes chi_b(1P,2P)->Upsilon(1S)gamma, a new structure centered at a mass of 10.530+/-0.005 (stat.)+/-0.009 (syst.) GeV is also observed, in both the Upsilon(1S)gamma and Upsilon(2S)gamma decay modes. This is interpreted as the chi_b(3P) system.Comment: 5 pages plus author list (18 pages total), 2 figures, 1 table, corrected author list, matches final version in Physical Review Letter

    Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    Measurements of inclusive jet suppression in heavy ion collisions at the LHC provide direct sensitivity to the physics of jet quenching. In a sample of lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the anti-kt algorithm with values for the distance parameter that determines the nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp. Jet production is found to be suppressed by approximately a factor of two in the 10% most central collisions relative to peripheral collisions. Rcp varies smoothly with centrality as characterized by the number of participating nucleons. The observed suppression is only weakly dependent on jet radius and transverse momentum. These results provide the first direct measurement of inclusive jet suppression in heavy ion collisions and complement previous measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables, submitted to Physics Letters B. All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02
    • 

    corecore